Original Articles

Propensity score adjustment of a treatment effect with missing data in psychiatric health services research


Abstract


Background: Missing values are a common problem for data analyses in observational studies, which are frequently applied in health services research. This paper examines the usefulness of different approaches to tackle the problem of incomplete observational data, focusing whether the Multiple Imputation (MI) strategy yields adequate estimates when applied to a complex analysis framework.

Methods: Based on observational study data originally comparing three forms of psychotherapy, a simulation study with different missing data scenarios was conducted. The considered analysis model comprised a propensity score-adjusted treatment effect estimation. Missing values were handled by complete case analysis, different MI approaches, as well as mean and regression imputation.

Results: All point estimators of the applied methods lay within the 95% confidence interval of the treatment effect derived from the complete simulation data set. Highest deviation was observed for complete case analysis. A distinct superiority of MI methods could not be demonstrated.

Conclusion: Since there was no clear benefit of one method to deal with missing values over another, health services researchers faced with incomplete observational data are well-advised to apply different imputation methods and compare the results in order to get an impression of their sensitivity.


Full Text:

PDF


DOI: https://doi.org/10.2427/10214

NBN: http://nbn.depositolegale.it/urn%3Anbn%3Ait%3Aprex-15659

References



Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks

  • There are currently no refbacks.


Copyright (c)

We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it (Read more).
Ok


EBPH Epidemiology, Biostatistics and Public Health | ISSN 2282-0930

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.